In [1]:
## Here we inspect the result of the isochrone indexing.
# Many different stars get tagged together and their median values are taken
# Here we look into the standard deviation.
# The slicing works fine, except for the photometry.
# Errors in the extinction law are small though!
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [2]:
ext = np.load('ext.npy')
ext_std = np.load('ext_std.npy')
parsec = np.load('parsec.npy')
parsec_std = np.load('parsec_std.npy')

In [3]:
ext.shape


Out[3]:
(243238, 5, 6)

In [4]:
for t in [5,50,95,99,100]:
    print(t)
    print(np.percentile(ext_std,t,axis = 0))


5
[[0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]]
50
[[0.00086241 0.0015     0.00205913 0.00320077 0.00497424 0.0065012 ]
 [0.0008165  0.00139971 0.00180278 0.00262996 0.00353083 0.0040507 ]
 [0.00076347 0.00126808 0.00163299 0.0023819  0.00318748 0.00372422]
 [0.00048412 0.0005     0.00070711 0.00104674 0.00193527 0.00295804]
 [0.00044222 0.0004     0.00035899 0.00036464 0.0004186  0.00043301]]
95
[[0.00499986 0.00917442 0.01213463 0.01820061 0.02658921 0.03324425]
 [0.004      0.00738217 0.00974999 0.01451106 0.02008031 0.02369308]
 [0.00357428 0.00661628 0.00879703 0.01316662 0.01852083 0.02225299]
 [0.00168996 0.00322593 0.00458149 0.00731031 0.01212623 0.01682927]
 [0.0005     0.0005     0.0005     0.0005     0.00062361 0.001     ]]
99
[[0.01156812 0.02162648 0.02921254 0.04469026 0.0693251  0.09119734]
 [0.00801111 0.01466227 0.01899058 0.02739994 0.03572908 0.03982144]
 [0.00729352 0.01331097 0.01732864 0.02514792 0.03299611 0.03804356]
 [0.00545384 0.01051731 0.01486141 0.02356904 0.03918767 0.05704581]
 [0.0005     0.00068693 0.00089062 0.00137179 0.00261328 0.00511369]]
100
[[0.0555     0.105      0.14399999 0.223      0.35499999 0.509     ]
 [0.05068459 0.09322285 0.1244528  0.18743315 0.21529515 0.16813336]
 [0.04760449 0.09058283 0.12125695 0.1818576  0.21391864 0.14574699]
 [0.036      0.0685     0.0965013  0.15350001 0.25799999 0.39300001]
 [0.00227761 0.00421307 0.00631249 0.01051796 0.02095591 0.04125467]]

In [5]:
parsec


Out[5]:
array([(-0.625, 10.12004,  5.1476984 ,  0.979, -4.601, 3.6351, 8.522, 16.44 , 17.124, 17.161, 15.641, 15.327,   7181017),
       (-0.575, 10.12004,  5.20012808,  0.981, -4.601, 3.6354, 8.524, 16.442, 17.128, 17.165, 15.641, 15.327,   7181018),
       (-0.525, 10.12004,  5.2008934 ,  0.976, -4.601, 3.6346, 8.519, 16.446, 17.138, 17.175, 15.641, 15.326,   7181019),
       ...,
       (-0.6  ,  6.6    , 66.45508575, 34.725,  6.24 , 5.2231, 5.583, -5.129, -5.23 , -5.235, -4.935, -4.856, 224261018),
       (-0.525,  6.6    , 66.49719238, 32.289,  6.205, 5.2598, 5.733, -5.826, -5.972, -5.953, -5.305, -5.111, 224262019),
       (-0.525,  6.6    , 66.4980011 , 32.29 ,  6.21 , 5.2647, 5.748, -6.053, -6.203, -6.184, -5.524, -5.341, 224263019)],
      dtype=[('meh_ini', '<f8'), ('log_age', '<f8'), ('m_ini', '<f8'), ('m_act', '<f8'), ('log_lum', '<f8'), ('log_teff', '<f8'), ('log_grav', '<f8'), ('gaia_g', '<f8'), ('gaia_bpbr', '<f8'), ('gaia_bpft', '<f8'), ('gaia_rp', '<f8'), ('gaia_rvs', '<f8'), ('parsec_index', '<i4')])

In [6]:
for item in parsec.dtype.names:
    print(item)
    for t in [5,50,95,99,100]:
        print(t,np.percentile(parsec_std[item],t))
    print("#########################")


meh_ini
5 0.0
50 0.012437342963832759
95 0.020637351501787
99 0.021812348491457804
100 0.025000000000000026
#########################
log_age
5 0.0
50 0.029029140561573803
95 0.7302465350998272
99 1.2228775227951296
100 1.7316443351419868
#########################
m_ini
5 0.0
50 0.09666569740683294
95 1.890072507512134
99 2.9568846853071027
100 9.563961029049999
#########################
m_act
5 0.0
50 0.03446306193158828
95 2.1964155935294682
99 4.137934975370321
100 11.806149251084745
#########################
log_lum
5 0.0
50 0.013310516847441962
95 0.01717972226617351
99 0.01978888913576274
100 0.025000000000000133
#########################
log_teff
5 0.0
50 0.005316315166013512
95 0.006557948389154714
99 0.007299999999999862
100 0.00990000000000002
#########################
log_grav
5 0.0
50 0.027675848340529503
95 0.3252730318264425
99 0.5052149078428048
100 0.6229999999999998
#########################
gaia_g
5 0.0
50 0.03763666240166508
95 0.07548565359701973
99 0.7751068291342743
100 2.4775
#########################
gaia_bpbr
5 0.0
50 0.038847143797285745
95 0.11633474946975952
99 1.1239387027894994
100 3.3925
#########################
gaia_bpft
5 0.0
50 0.038897450518051685
95 0.11561151497599031
99 1.1161604058270262
100 3.3635
#########################
gaia_rp
5 0.0
50 0.03815548829442779
95 0.07063143772394824
99 0.6779388409562461
100 2.188
#########################
gaia_rvs
5 0.0
50 0.03868785339095456
95 0.07184252687639357
99 0.6347634622195595
100 1.9971360118930308
#########################
parsec_index
5 55208031.849999994
50 168186021.5
95 214192013.15
99 219844104.74000424
100 224263019.0
#########################

In [7]:
# We use a bigger font for you to see better on the beamer
font = {'family' : 'normal',
        'weight' : 'bold',
        'size'   : 22}
matplotlib.rc('font', **font)

## We have a problem with those high extincted stars. They have the same properties as the rest
## but strongly diverging photometry. Could be a problem when mapping to other photometry. Write into paper.

sort = np.argsort(parsec_std["gaia_g"])
plt.figure(figsize=(20,10))
plt.scatter(parsec["log_teff"][sort],parsec["log_lum"][sort],c = parsec_std['gaia_g'][sort])
plt.colorbar(label="std in gaia_g")
plt.gca().invert_xaxis()
plt.ylabel("loglum")
plt.xlabel("logteff")


Out[7]:
Text(0.5,0,'logteff')
/home/rybizki/anaconda3/lib/python3.6/site-packages/matplotlib/font_manager.py:1331: UserWarning: findfont: Font family ['normal'] not found. Falling back to DejaVu Sans
  (prop.get_family(), self.defaultFamily[fontext]))

In [8]:
plt.scatter(parsec["gaia_bpbr"][sort]-parsec['gaia_rp'][sort],parsec["gaia_g"][sort],c = parsec_std['gaia_g'][sort])


Out[8]:
<matplotlib.collections.PathCollection at 0x7fdefa437b00>
/home/rybizki/anaconda3/lib/python3.6/site-packages/matplotlib/font_manager.py:1331: UserWarning: findfont: Font family ['normal'] not found. Falling back to DejaVu Sans
  (prop.get_family(), self.defaultFamily[fontext]))

In [ ]: